Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1144720180220030141
Investigative Magnetic Resonance Imaging
2018 Volume.22 No. 3 p.141 ~ p.149
Efficient Experimental Design for Measuring Magnetic Susceptibility of Arbitrarily Shaped Materials by MRI
Hwang Seon-Ha

Lee Seung-Kyun
Abstract
Purpose: The purpose of this study is to develop a simple method to measure magnetic susceptibility of arbitrarily shaped materials through MR imaging and numerical modeling.

Materials and Methods: Our 3D printed phantom consists of a lower compartment filled with a gel (gel part) and an upper compartment for placing a susceptibility object (object part). The B0 maps of the gel with and without the object were reconstructed from phase images obtained in a 3T MRI scanner. Then, their difference was compared with a numerically modeled B0 map based on the geometry of the object, obtained by a separate MRI scan of the object possibly immersed in an MR-visible liquid. The susceptibility of the object was determined by a least-squares fit.

Results: A total of 18 solid and liquid samples were tested, with measured susceptibility values in the range of ?12.6 to 28.28 ppm. To confirm accuracy of the method, independently obtained reference values were compared with measured susceptibility when possible. The comparison revealed that our method can determine susceptibility within approximately 5%, likely limited by the object shape modeling error.

Conclusion: The proposed gel-phantom-based susceptibility measurement may be used to effectively measure magnetic susceptibility of MR-compatible samples with an arbitrary shape, and can enable development of various MR engineering parts as well as test biological tissue specimens.
KEYWORD
Magnetic susceptibility, B0 map, MR engineering
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø